

Synthesis and antifungal activity of N-(alkyl/aryl)-2-(3-oxo-1,4-benzothiazin-2-yl)acetamide

G Gupta^{1*} & S B Wagh²

¹ Lachoo Memorial College of Science and Technology, Pharmacy Wing, Shastrinagar, Sector-A, Jodhpur 342 003, India

E-mail: guptaj2000@rediffmail.com

² N.D.M.V.P. Samaj's College of Pharmacy, Nashik, India

E-mail: sbwagh_nsk@sancharnet.in

Received 15 February 2005; accepted (revised) 20 July 2005

A series of N-(alkyl/aryl)-2-(3-oxo-1,4-benzothiazin-2-yl)acetamide have been synthesized by condensation of substituted amines with maleic anhydride (MA) followed by cyclization with *o*-aminothiophenol (*o*-ATP). All the compounds have been screened for their antifungal activity against *Trichophyton rubrum*, *Epidermophyton floccosum* and *Malassezia furfur*. In the primary screening, some of the compounds exhibited appreciable activity. The structures of the synthesized compounds **7a-z** have been established on the basis of elemental analysis and spectral data.

Key words: N-(alkyl/aryl)-2-(3-oxo-1,4-benzothiazin-2-yl)acetamide, *o*-ATP, maleic anhydride, amines

IPC: Int.Cl. ⁷ C 07 D

Incidence of fungal infections have increased dramatically in the last few decades. The incidences of infection in hair, nails and the outer layer of epidermis are very common in India¹. This type of infection is collectively known as Dermatophytoses and caused by dermatophytes (superficial fungi)^{2,3}. Intact dry skin is an effective barrier against many diseases but aforementioned incidences of infections develop with fungal infections⁴. The increased intensity of these life threatening fungal infections and the development of resistance to the currently used antifungal agents warrant the search for novel, alternative chemical moieties. This encouraged us to synthesize compounds like N-(alkyl/aryl)-2-(3-oxo-1,4-benzothiazin-2-yl)acetamide. It has been previously reported that substituted acid/ester compounds containing benzothiazine⁵⁻⁹ moiety exhibited prominent antifungal activity.

Due to the interesting activity of various substituted benzothiazines¹⁰⁻¹³ as biological agents, they are the subject of considerable attention. The pharmaceutical importance of these compounds lies in the fact that they are effective as anti-inflammatory^{14,15}, anthelmintic¹⁶⁻¹⁸, anti-fungal¹⁸ and CNS depressants¹⁸ (**Figure 1**).

Results and Discussion

N-(alkyl/aryl)-2-(3-oxo-1,4-benzothiazin-2-yl)acetamide **7a-z** was prepared by the condensation of the

corresponding isomerized maleanillic ester **5a-z** with *o*-ATP in DMF solvent. The reaction mixture was allowed to reflux for 5 hr and the product was isolated by dumping the mixture into crushed ice. The starting isomerized maleanillic ester **5a-z** was prepared by a three-step process from substituted amines **1** and maleic anhydride **2**. Maleanillic acid **3a-z** was synthesized by the reaction of substituted amines **1** with maleic anhydride **2** in ether solvent at rt. Maleanillic ester **4a-z** was synthesized from **3a-z** by esterification with methanol in the presence of P₂O₅. Isomerized maleanillic ester **5a-z** was synthesized by isomerization of **4a-z** in the presence of aniline.

The synthesis is outlined in **Scheme I**. The characterization data of compounds **3a-y**, **4a-y**, **5a-y** and **7a-y** are given in **Tables I** and **II**.

Biological activity

Antifungal activity

The synthesized compounds **7a-z** in the concentration range 0.25-0.031 μ mole/mL were tested for

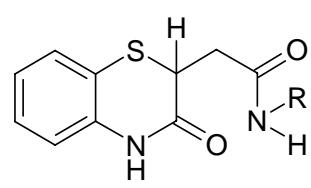
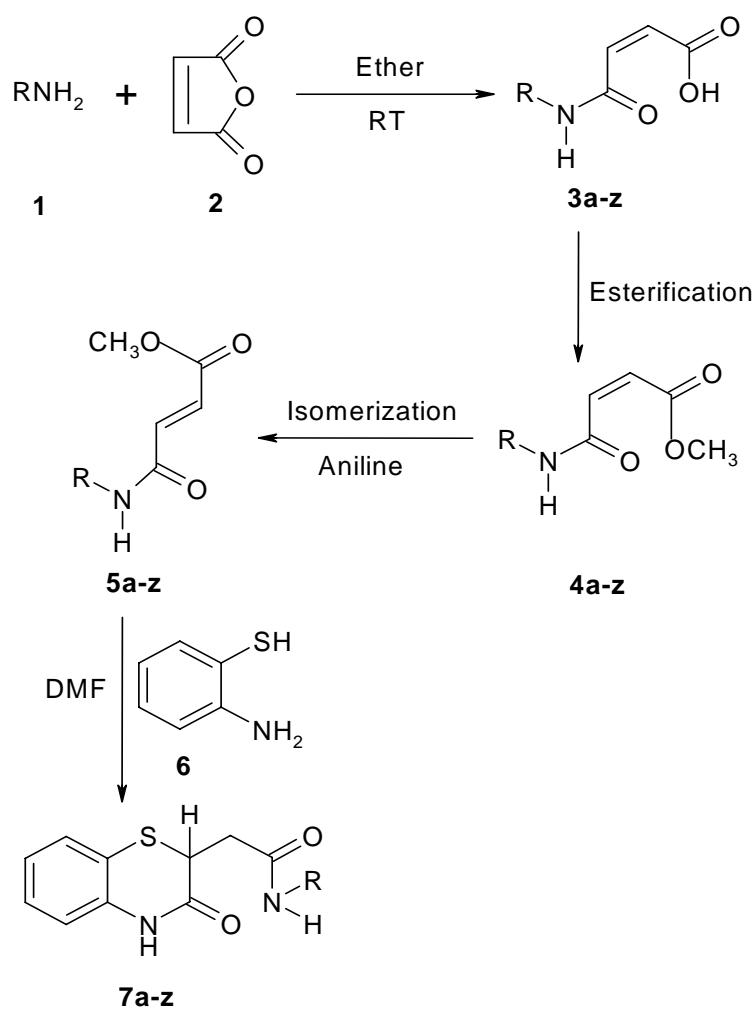



Figure 1

Scheme I

Table I – Characterization data of compounds **3a-y**, **4a-y** and **5a-y**

Compd	R	Yield (%)			m.p.(°C)		
		Acid 3	Ester 4	I. Ester 5	Acid 3	Ester 4	I. Ester 5
a	-CH ₃	79	46	50	135-40	153-56	121-23
b	-C(CH ₃) ₃	89	49	56	142-45	150-53	82-6
c	-C ₂ H ₅	85	56	66	131-34	130-33	115-16
d	-(CH ₂) ₃ -CH ₃	94	56	64	77-80	96-8	56-8
e	-CH ₂ -CH ₂ -OH	86	54	67	121-23	125-27	112-13
f	-C ₆ H ₄ -4-OH	89	50	84	158-59	156-58	105-07
g	-C ₆ H ₄ -2-OH	94	49	70	168-72	138-40	102-06
h	-C ₆ H ₃ -3-Cl-4-OH	82	49	53	210-12	220-22	156-60
i	-CH(CH ₃)-CH ₂ -OH	78	50	78	96-8	120-22	84-6
j	-C ₆ H ₃ -2-CH ₃ -3-NO ₂	92	54	67	115-17	125-27	99-101
k	-C ₆ H ₄ -3-NO ₂	79	56	76	120-21	145-47	102-04
l	-C ₆ H ₄ -4-NO ₂	93	67	74	97-9	95-7	56-9
m	-C ₆ H ₄ -2-CH ₃	96	49	59	120-22	55-7	96-9
n	-C ₆ H ₄ -3-CH ₃	87	56	54	191-94	70-2	78-81

— *Contd*

Table I — Characterization data of compounds **3a-y**, **4a-y** and **5a-y** — *Contd*

Compd	R	Yield (%)			m.p.(°C)		
		Acid 3	Ester 4	I. Ester 5	Acid 3	Ester 4	I. Ester 5
o	-C ₆ H ₄ -4-CH ₃	73	58	74	98-100	111-12	89-91
p	-C ₆ H ₄ -2-C ₂ H ₅	87	46	60	96-8	89-91	89-92
q	-C ₆ H ₄ -2-Cl	88	59	55	124-26	80-4	102-04
r	-C ₆ H ₄ -3-Cl	97	54	55	193-94	190-92	126-28
s	-C ₆ H ₄ -4-Cl	95	65	53	198-99	67-70	69-71
t	-C ₆ H ₂ -2,4,5-Cl	84	48	66	158-60	165-66	136-38
u	-C ₆ H ₄ -2-OCH ₃	82	59	56	133-37	102-07	96-9
v	-C ₆ H ₄ -3-OCH ₃	95	57	56	121-22	134-36	102-03
w	-C ₆ H ₄ -4-OCH ₃	86	58	55	175-79	187-88	154-56
x	-C ₆ H ₁₁	78	65	59	110-13	65-8	60-3
y	-CH ₂ -C ₆ H ₅	85	56	66	131-34	130-33	115-16

Table II — Characterization data of compounds **7a-y**

Compd	R	Yield (%)	m.p. (°C)	R _f	Mol. formula	Found % (Calcd)		
						C	H	N
7a	-CH ₃	60	233-35	0.56	C ₁₁ H ₁₂ N ₂ O ₂ S	55.91 (55.89)	5.17 5.17	11.86 11.86)
7b	-C(CH ₃) ₃	55	190-92	0.51	C ₁₄ H ₁₈ N ₂ O ₂ S	60.4 (60.6)	6.52 6.53	10.0 10.1)
7c	-C ₂ H ₅	83	180-82	0.54	C ₁₂ H ₁₄ N ₂ O ₂ S	57.8 (57.6)	5.64 5.62	11.19 11.20)
7d	-(CH ₂) ₃ -CH ₃	69	188-90	0.60	C ₁₄ H ₁₈ N ₂ O ₂ S	60.4 (60.6)	6.12 6.10	10.06 10.09)
7e	-CH ₂ -CH ₂ -OH	54	185-88	0.42	C ₁₂ H ₁₄ N ₂ O ₃ S	54.12 (54.15)	5.30 5.29	10.52 10.51)
7f	-C ₆ H ₄ -4-OH	79	228-30	0.44	C ₁₆ H ₁₄ N ₂ O ₃ S	61.13 (61.16)	4.49 4.50	8.91 8.93)
7g	-C ₆ H ₄ -2-OH	77	203-05	0.66	C ₁₆ H ₁₄ N ₂ O ₃ S	61.13 (61.11)	4.49 4.48	8.91 8.90)
7h	-C ₆ H ₃ -3-Cl-4-OH	65	208-11	0.14	C ₁₆ H ₁₃ N ₂ O ₃ SCl	55.09 (55.10)	3.76 3.74	8.03 8.02)
7i	-CH(CH ₃)-CH ₂ -OH	67	206-08	0.54	C ₁₃ H ₁₆ N ₂ O ₃ S	55.70 (55.72)	5.75 5.77	9.99 9.98)
7j	-C ₆ H ₃ -2-CH ₃ -3-NO ₂	56	155-59	0.45	C ₁₇ H ₁₅ N ₃ O ₄ S	57.13 (57.11)	4.23 4.24	11.76 11.78)
7k	-C ₆ H ₄ -3-NO ₂	45	185-90	0.34	C ₁₆ H ₁₃ N ₃ O ₄ S	55.97 (55.95)	3.82 3.80	12.24 12.26)
7l	-C ₆ H ₄ -4-NO ₂	66	237-40	0.32	C ₁₆ H ₁₃ N ₃ O ₄ S	55.97 (55.96)	3.82 3.81	12.24 12.25)
7m	-C ₆ H ₄ -2-CH ₃	70	240-45	0.19	C ₁₇ H ₁₆ N ₂ O ₂ S	65.36 (65.38)	5.16 5.17	8.97 8.95)
7n	-C ₆ H ₄ -3-CH ₃	56	216-19	0.42	C ₁₇ H ₁₆ N ₂ O ₂ S	65.36 (65.37)	5.16 5.17	8.97 8.96)
7o	-C ₆ H ₄ -4-CH ₃	72	212-15	0.07	C ₁₇ H ₁₆ N ₂ O ₂ S	65.36 (65.35)	5.16 5.18	8.97 8.98)
7p	-C ₆ H ₄ -2-C ₂ H ₅	79	195-97	0.41	C ₁₈ H ₁₈ N ₂ O ₂ S	66.23 (66.25)	5.56 5.55	8.58 8.57)

— *Contd*

Table II — Characterization data of compounds **7a-y** — *Contd*

Compd	R	Yield (%)	m.p. (°C)	R _f	Mol. formula	Found % (Calcd)		
						C	H	N
7q	-C ₆ H ₄ -2-Cl	75	235-39	0.25	C ₁₆ H ₁₃ N ₂ O ₂ SCl	57.74 (57.76)	3.94 (3.93)	8.42 (8.41)
7r	-C ₆ H ₄ -3-Cl	76	215-18	0.43	C ₁₆ H ₁₃ N ₂ O ₂ SCl	57.74 (57.72)	3.94 (3.95)	8.42 (8.43)
7s	-C ₆ H ₄ -4-Cl	65	230-32	0.59	C ₁₆ H ₁₃ N ₂ O ₂ SCl	57.74 (57.75)	3.94 (3.93)	8.42 (8.43)
7t	-C ₆ H ₂ -2, 4,5-Cl	63	250-52	0.17	C ₁₆ H ₁₁ N ₂ O ₂ SCl ₃	47.84 (47.85)	2.76 (2.74)	6.97 (6.96)
7u	-C ₆ H ₄ -2-OCH ₃	76	182-85	0.42	C ₁₇ H ₁₆ N ₂ O ₃ S	62.18 (62.20)	4.91 (4.92)	8.53 (8.55)
7v	-C ₆ H ₄ -3-OCH ₃	86	191-93	0.38	C ₁₇ H ₁₆ N ₂ O ₃ S	62.18 (62.19)	4.91 (4.90)	8.53 (8.55)
7w	-C ₆ H ₄ -4-OCH ₃	79	188-90	0.35	C ₁₇ H ₁₆ N ₂ O ₃ S	62.18 (62.14)	4.91 (4.93)	8.53 (8.57)
7x	-C ₆ H ₁₁	59	185-90	0.24	C ₁₆ H ₂₀ N ₂ O ₂ S	63.13 (63.14)	6.62 (6.63)	9.20 (9.18)
7y	-CH ₂ -C ₆ H ₅	59	239-40	0.66	C ₁₇ H ₁₆ N ₂ O ₂ S	64.41 (64.40)	4.73 (4.74)	9.39 (9.40)

Mobile Phase: 8:2 (Chloroform:Methanol)

antifungal activity against *Trichophyton rubrum*, *Epidermophyton floccosum* and *Malassazia furfur* by turbidimetric method². For comparison, ketoconazole was used as a standard. For screening, synthesized compounds were grouped using combinatorial chemistry (**Tables III and IV**).

Results are presented in **Tables V, VI and VII**.

Experimental Section

Melting points of all the compounds were determined in open capillary tubes and are uncorrected. Thin layer chromatography was performed using silica gel coated on a glass plate and spots were visualized by exposure to iodine vapor. IR spectra were recorded on a Shimadzu IR spectrophotometer using Nujol. ¹H NMR spectra were recorded in CDCl₃/acetone-d₆ on a FX 90Q FT NMR spectrometer using TMS as internal standard (chemical shifts in δ , ppm).

Maleanillic acids 3a-z. To the solution of maleic anhydride (9.8 g, 0.1 mole) in diethyl ether (40 mL), a solution of aniline (9.3 g, 0.1 mole) in diethyl ether (40 mL) was added. The reaction mixture was stirred at rt for 5 min. The precipitate was filtered, washed with ether (2 \times 30 mL) and purified by recrystallization from acetone-petroleum ether to get the compound **3z**. Yield 95%, m.p. 201-03°C. The other compounds **3a-y** were also prepared in a similar way by the reaction of **2** with various amines **1**.

Table III — Grouping of synthesized compounds **7a-z** using combinatorial chemistry

Set	Compd
R ₁	7a, 7b, 7c, 7d
R ₂	7e, 7f, 7g, 7h, 7i
R ₃	7j, 7k, 7l
R ₄	7m, 7n, 7o, 7p
R ₅	7q, 7r, 7s, 7t
R ₆	7u, 7v, 7w
R ₇	7x, 7y, 7z

Table IV — Grouping of active compounds found after preliminary screening using combinatorial chemistry

Set	Compd		
	<i>Epidermophyton floccosum</i>	<i>Trichophyton rubrum</i>	<i>Malassazia furfur</i>
S ₁	7j, 7x	7a, 7x	7a, 7x
S ₂	7k, 7y	7b, 7c, 7y	7b, 7c, 7y
S ₃	7l, 7z	7d, 7z	7d, 7z

Maleanillic esters 4a-z. To ice-cold methanol (60 mL), phosphorus pentaoxide (8.5 g, 0.06 mole) was added in portions with stirring and the temperature was kept below 10°C. To the resulting solution, **3z** (5.7 g, 0.03 mole) was added in one portion and was mixed gently. It was then refluxed for 6 hr on a water bath. Excess methanol was distilled out under reduced

Table V—Antifungal activity data of compounds set R₁-R₇

Set	Concentration of compounds (1 μ mole/mL) required for inhibition				<i>Trichophyton rubrum</i>				<i>Malassazia furfur</i>			
	<i>Epidermophyton floccosum</i>				<i>Trichophyton rubrum</i>				<i>Malassazia furfur</i>			
0.25	0.125	0.062	0.031	0.25	0.125	0.062	0.031	0.25	0.125	0.062	0.031	
R ₁	(-)	(+)	(+)	(+)	(-)	(-)	(+)	(+)	(-)	(-)	(-)	(+)
R ₂	(-)	(+)	(+)	(+)	(-)	(+)	(+)	(+)	(-)	(+)	(+)	(+)
R ₃	(-)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)
R ₄	(+)	(+)	(+)	(+)	(-)	(+)	(+)	(+)	(-)	(+)	(+)	(+)
R ₅	(-)	(+)	(+)	(+)	(-)	(+)	(+)	(+)	(-)	(+)	(+)	(+)
R ₆	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(-)	(+)	(+)	(+)
R ₇	(-)	(-)	(+)	(+)	(-)	(-)	(-)	(+)	(-)	(-)	(+)	(+)
K	(-)	(-)	(+)	(+)	(-)	(-)	(+)	(+)	(-)	(-)	(+)	(+)

Table VI—Antifungal activity data of compounds set S₁-S₃

Set	Concentration of compounds (1 μ mole/mL) required for inhibition				<i>Trichophyton rubrum</i>				<i>Malassazia furfur</i>			
	<i>Epidermophyton floccosum</i>				<i>Trichophyton rubrum</i>				<i>Malassazia furfur</i>			
0.25	0.125	0.062	0.031	0.25	0.125	0.062	0.031	0.25	0.125	0.062	0.031	
S ₁	(-)	(+)	(+)	(+)	(-)	(-)	(+)	(+)	(-)	(-)	(-)	(+)
S ₂	(-)	(-)	(-)	(+)	(-)	(+)	(+)	(+)	(-)	(+)	(+)	(+)
S ₃	(-)	(+)	(+)	(+)	(-)	(+)	(+)	(+)	(-)	(+)	(+)	(+)
K	(-)	(-)	(+)	(+)	(-)	(-)	(+)	(+)	(-)	(-)	(+)	(+)

(-) Indicates inhibition of growth

(+) Indicates presence of growth

K-Ketoconazole

Table VII—Antifungal activity data of compounds 7a, 7k, 7x and 7yConcentration of compounds (1 μ mole/mL) required for inhibition

Epidermophyton floccosum				
Compd	0.25	0.125	0.062	0.031
7 k [-C ₆ H ₄ -3-NO ₂]	(-)	(-)	(-)	(+)
7 y [-C ₆ H ₅]	(-)	(-)	(+)	(+)
Trichophyton rubrum				
Compd	0.25	0.125	0.062	0.031
7 a [-CH ₃]	(-)	(-)	(+)	(+)
7 x [-C ₆ H ₁₁]	(-)	(-)	(-)	(+)
Malassazia furfur				
Compd	0.25	0.125	0.062	0.031
7 a [-CH ₃]	(-)	(-)	(-)	(+)
7 x [-C ₆ H ₁₁]	(-)	(-)	(+)	(+)
K	(-)	(-)	(+)	(+)

(-) Indicates inhibition of growth

(+) Indicates presence of growth

K-Ketoconazole

pressure. The resulting residue was poured into crushed ice, filtered and purified by recrystallization from ethanol to get the compound 4z. Yield 51%, m.p. 196-99°C. The other compounds 4a-y were also prepared in a similar way from 3a-y.

Isomerised maleanic esters 5a-z. To the solution of 4z (4.1 g, 0.02 mole) in absolute ethanol (40 mL), a solution of redistilled aniline (0.93 g, 0.01 mole) was added. The resulting mixture was refluxed on a steam bath for 3 hr. The precipitate was filtered, washed with dil. HCl (10 mL) and purified by recrystallization from ethanol to get the compound 5z. Yield 63%, m.p. 159-61°C. The other compounds 5a-y were also prepared in a similar way from 4a-y.

N-(alkyl/aryl)-2-(3-oxo-1,4-benzothiazin-2-yl)acetamide 7a-z. To the solution of 5z (10.2 g, 0.05 mole) in DMF (100 mL), a solution of o-ATP (6.25 g, 0.05 mole) in DMF (20 mL) was added. The resulting mixture was refluxed for 5 hr. The solution was cooled and poured into crushed ice. The solid that separated out was filtered, washed with water and purified by recrystallization from ethanol to get the compound 7z. Yield 75%, m.p. 262-66°C. Anal. Calcd for

$C_{16}H_{14}N_2O_2S$: C, 65.36; H, 5.16; N, 8.97, Found: C, 65.34; H, 5.12; N, 8.96%; IR (Nujol): 3345 (NH), 1635 (NHCO), 2560 (S-H), 1760 cm^{-1} (C=O); 1H NMR (for **7k**): δ 2.9 (m, 2H, -CH₂CO), 4.6 (m, 1H, S-CH), 7.4 (m, 8H, ArH), 9.8 (bs, 1H, NH), 10.8 (bs, 1H, NH); 1H NMR (for **7r**): δ 2.8 (m, 2H, -CH₂CO), 4.3 (m, 1H, S-CH), 7-7.7 (m, 8H, ArH), 9.6 (bs, 1H, NH), 10.3 (bs, 1H, NH). The other compounds **7a-y** were also prepared in a similar way from **5a-y**.

Acknowledgement

The authors are thankful to National Virology Center, Pune for providing strains of fungus and to the Head, Dept. of Pharmacology for providing laboratory facilities.

References

- 1 Jawetz E, Melnick J & Adelberg E A, *Review of Medicinal Microbiology*, 7, **1997**, 244.
- 2 Tortora J G, Funke B R & Case C I, *Microbiology an Introduction*, 6, **1997**, 672.
- 3 Peleczar M J, Chan E C S & Krieg N R, *Microbiology*, 5th edition, (Tata McGraw Hill Publishing Company Ltd., New Delhi), **1993**, 511.
- 4 Cappuccino J G & Sherman N, *Microbiology – A Laboratory Manual*, 4, **1996**, 199.
- 5 Wagh S B, Shaikh A S & Balasubramaniyan V, *Indian J Chem*, 22B, **1983**, 868.
- 6 Bhatia V G, Shaikh A S, Tongare D B & Balasubramaniyan V, *Indian J Chem*, 21B, **1982**, 259.
- 7 Balasubramaniyan P, Patel M V, Wagh S B & Balasubramaniyan V, *Curr Sci*, 51, **1982**, 279.
- 8 Wagh S B, Balasubramaniyan P & Balasubramaniyan V, *Indian J Chem*, 21B, **1982**, 1071.
- 9 Patel M V, Balasubramaniyan P & Balasubramaniyan V, *Indian J Chem*, 18B, **1979**, 367.
- 10 Patel M V, Balasubramaniyan P & Balasubramaniyan V, *Indian J Chem*, 18B, **1979**, 245.
- 11 Gupta R R & Kumar R, *Heterocycles*, 22(5), **1984**, 1143.
- 12 Ramage G R, Rodd E H & Landquist J K, *Chemistry of Carbon Compounds*, 4c, **1960**, 1511.
- 13 Giuliano G, Valeria A, Leandro B, Marilena G, Ariella F, Aristotelis P & Lunna S, *Heterocycl Commun*, 1(4), **1995**, 265.
- 14 Turk C F, Egli P & Krapcho J, *Heterocycles*, 14, **1977**, 1135.
- 15 Sastry C V R, Rao K S & Jain M L, *Indian J Chem*, 30 B, **1991**, 535.
- 16 Sastry C V R, Rao K S, Krishnan V S H & Rastogi K, *Indian J Chem*, 29 B, **1990**, 297.
- 17 Shridhar D R, Jogibhukta M & Krishnan V S H, *Indian J Chem*, 21 B, **1982**, 130.
- 18 Masashi K, Masao Y, Mayoichi S, Tetsu S, Tsutomu Y & Yoshifumi M, *Chem Abstr*, 87, **1977**, 68378.